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Outline of the presentation 

• Problem:
- Context: What are active nets? What are they for?
- Why is it interesting to know the CPU resources 

requirement of an active application (AA)?
- What are the sources of variability in the execution 

time of an AA?
• Proposed solution:

- Two models to characterize the processing 
requirements of an application on any active node

- A mechanism to scale the models from one node 
to a different one

• Discussion and future work



Active networks overview

• Active packets carry not only data but also the code 
to process them which is executed at active nodes.

• Example: an application that sends MPEG packets 
can specify an intelligent dropping algorithm to be 
applied at intermediate nodes if congestion is 
detected. 

• Advantage: fast and easy deployment of customized 
network services.



Why is it important to know the CPU resource 
requirements of an active application?

• Implication: in an active net the processing 
requirements can vary a lot from packet to packet .

• Without modeling, prediction, measurement and 
control, 3 threats:
- a packet may consume excessive CPU time at a  

node, causing the node to deny services to other 
packets,

- an active node may be unable to schedule its 
resources to meet the performance requirements 
of packets,

- an active packet may be unable to select a path 
that can meet its performance requirements.



Existing control solutions

• A limit fixed by each node, the same for all packets.
• A time-to-live for the packet fixed by the application, 

the same for all nodes.

• Limitations with these solutions: 
- How to choose the limit?
- This avoids major problems but doesn’t permit 

optimum management.
- Because: all applications are treated the same 

way.



Necessity of modeling CPU requirements

• Idea to overcome these limitations: measure the CPU 
requirements of a packet once, and have the packet 
transport this information along with its data and 
code.

• Problem: there is no unit to measure CPU 
requirement that can be understood by all active 
nodes.

• It’s necessary to have a model which captures all 
sources of variability and which can be translated on 
every node into a meaningful measure.



Sources of variability in processing time
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Modeling active applications: trace

Active Node OS
System calls
Monitoring

Execution trace
series of CPU time stamped  
system calls and transitions

…
begin, user (4 cc), read (20 cc), user 
(18 cc), write(56 cc), user (5 cc), end
begin, user (2 cc), read (21 cc), user 
(18 cc), kill (6 cc), user (8 cc), end
begin, user (2 cc), read (15 cc), user 
(8 cc), kill (5 cc), user (9 cc), end
begin, user (5 cc), read (20 cc), user 
(18 cc), write(53 cc), user (5 cc), end
begin, user (2 cc), read (18 cc), user 
(17 cc), kill (20 cc), user (8 cc), end
…

AA2

EE1:ANTS (java)
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Modeling active applications: model M1

Execution trace

Scenario A: 
sequence = “read-write”, 
probability = 2/5

Scenario B: 
sequence = “read-kill”, 
probability = 3/5

Distributions of CPU time in system calls :

Model M1
(suited for ANTS applications)
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Distributions of CPU time between system calls :

…
begin, user (4 cc), read (20 cc), 
user (18 cc), write(56 cc), user 
(5 cc), end
begin, user (2 cc), read (21 cc), 
user (18 cc), kill (6 cc), user 
(8 cc), end
begin, user (2 cc), read (15 cc), 
user (8 cc), kill (5 cc), user (9 
cc), end
begin, user (5 cc), read (20 cc), 
user (18 cc), write(53 cc), user 
(5 cc), end
begin, user (2 cc), read (18 cc), 
user (17 cc), kill (20 cc), user 
(8 cc), end
…
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Modeling active applications: model M2

Execution trace

Scenario A: 
sequence = begin, user (4,5 cc), 
read (20 cc), user (18 cc), write 
(54,5 cc), user (5 cc), end
probability = 2/5

Scenario B: 
sequence = begin, user (2 cc), read 
(18 cc), user (14.33 cc), kill 
(10.33 cc), user (8.33 cc), end
probability = 3/5

Model M2
(suited for Magician applications)

…
begin, user (4 cc), read (20 cc), 
user (18 cc), write(56 cc), user 
(5 cc), end
begin, user (2 cc), read (21 cc), 
user (18 cc), kill (6 cc), user 
(8 cc), end
begin, user (2 cc), read (15 cc), 
user (8 cc), kill (5 cc), user (9 
cc), end
begin, user (5 cc), read (20 cc), 
user (18 cc), write(53 cc), user 
(5 cc), end
begin, user (2 cc), read (18 cc), 
user (17 cc), kill (20 cc), user 
(8 cc), end
…



Predicting CPU requirements

• A node needs to predict not only the average CPU 
time required to execute a packet but also the high 
percentiles (example : 95% of executions are 
expected to complete within 70 cc).

• Model M1: simulation
• Model M2: analytical computation

Active Active average absolute deviation of predictions from reality (%)
Network Application M1, 100 bins, 20000 rep M1, 50 bins, 20000 rep M1, 50 bins, 500 rep M2

Platform mean high perc. mean high perc. mean high perc. mean high perc.

ANTS ping 0.859 0.9 0.643 1.622 2.696 9.8 0.028 16
multicast 0.398 1.94 0.351 3.002 4.913 15.93 0.001 18

magician ping 0.296 49 0.193 43 0.006 18
route 0.991 20 0.211 19 0.001 23



Overcoming node heterogeneity: node model

• Node model:
- a system benchmark program ⌫ for each system 

call, average system 
- for each EE, a user benchmark program ⌫ average 

time spent in the EE between system calls

• To scale: a reference node model known by all other 
active nodes

AA model on node 1:
read  30 cc
user  10 cc
write 20 cc

Model of node 1:
read  40 cc
write 18 cc
user  13 cc

Model of node 2:
read  20 cc
write 45 cc
user 9 ccscale

AA model on node 2:
read  30*20/40 = 15 cc
user  10*9/13  =  7 cc
write 20*45/18 = 50 cc



Overcoming node heterogeneity: results

Platform Application node 1 node 2 mean high perc.
Daisy Blue 2.78 4.91

Ping Daisy Sloth 4.55 11.05
Blue Daisy 3.63 5.64

ANTS Sloth Blue 7.69 8.33
Daisy Blue 0.32 7.29

Multicast Blue Daisy 3.15 11.79
Sloth Daisy 23.38 15.7
Blue Daisy 11.49 20.03

Ping Blue Sloth 8.01 5.2
Magician Daisy Blue 7.3 37.92

Blue Daisy 2.23 19.23
Route Daisy Blue 1.59 34.54

Sloth Blue 19.04 44.3



Limitations of our models

• Models can be large: O(number of scenarios, number 
of bins, distributions of the times).

• Simulation can be resource and time consuming: 
O(number of repetitions, size of the model).

• Trace-based models might represent probabilities not 
met in reality, if the scenario mix used to generate the 
traces does not represent the scenario mix actually 
seen on the nodes.

• Application behavior, such as looping, may depend 
on conditions at network nodes, and these conditions 
can be difficult to predict when generating the original 
traces.



Future work

• Increase the test bed size (more nodes, more 
platforms, more applications)

• Investigate new models (your ideas are welcome!)
- e.g., parameterize paths for loops

• Investigate an “Active” model:
- gains experience as it travels through the net,
- continuously evaluate which of the available co-

existing models or prediction systems is the most 
accurate to return the prediction. 

• Integrate our models with GE network-resource 
prediction system.



Your turn...

Questions, suggestions…

http://w3.antd.nist.gov/active-nets


